Background
Activation of signaling effectors by G-protein coupled receptors (GPCRs) depends on different molecular mechanisms triggered by conserved amino acid residues. Although studies have focused on the G-protein signaling state, the mechanism for β-arrestin signaling by CB1 is not yet well defined. Studies have indicated that transmembrane helix 7 (TMH7) and the highly conserved NPXXY motif can be subject to different conformational changes in response to biased ligands and could therefore participate in a molecular mechanism to trigger β-arrestin recruitment.
Conclusions
These findings point to a novel mechanism for β-arrestin recruitment, implicating amino acids in the NPXXY motif as critical for the putative β-arrestin biased conformational state of Class A GPCRs.
Methods
Point mutations of the NPXXY motif and associated residues were generated in the CB1 receptor using site-directed mutagenesis and transfection into HEK-293 cells. Signaling by wild-type and mutant receptors was analyzed by quantifying inhibition of cAMP, and by β-arrestin recruitment assays.
Objective
To investigate the effect of mutations in the NPXXY motif on different signaling pathways activated by the CB1 receptor. Materials and
Results
We found that N7.49 and Y7.53 are essential for β-arrestin recruitment by CB1. N7.49A and Y7.53F impair β-arrestin signaling, with no effect on G-protein signaling. We found a regulatory role for residue I2.43; I2.43 interacts with Y7.53, affecting its positioning. Reducing steric bulk at I2.43 (I2.43A) enhances β-arrestin1 recruitment, while introducing a polar residue (I2.43T) reduces β-arrestin recruitment. Conclusions: These findings point to a novel mechanism for β-arrestin recruitment, implicating amino acids in the NPXXY motif as critical for the putative β-arrestin biased conformational state of Class A GPCRs.
