Sensitive and Rapid Detection of Aspartic Acid with Co3O4-ZnO Nanorods Using Differential Pulse Voltammetry

使用差分脉冲伏安法利用 Co3O4-ZnO 纳米棒灵敏快速地检测天冬氨酸

阅读:4
作者:Sulaiman Y Alfaifi, Waheed Abiodun Adeosun, Abdullah M Asiri, Mohammed M Rahman

Abstract

Herein, the detection of aspartic acid by doped Co3O4-ZnO nanorod materials was proposed using differential pulse voltammetry. The nano-composite metal oxide was synthesized by the wet precipitation method in basic media. Aspartic acid is a non-essential amino acid naturally synthesized in the body with lot of health significance, including as a biomarker for several health deficiencies. The synthesized composite Co3O4-ZnO nanorod was well-investigated by using FESEM, XRD, XPS, FTIR, UV/vis., EIS, and CV. The synthesized composite exhibited a low limit of detection (0.03 µM, high sensitivity (0.0014 µA µM-1 cm-2) and wide linear range (0.05-50 µM) for aspartic acid. The substrate, the Co3O4-ZnO nanorod, enhanced the electro-catalytic oxidation of aspartic acid as a result of its catalytic and conductivity properties. The developed sensor based on Co3O4-ZnO has a repeatable, reproducible and stable current response for aspartic acid. Additionally, other electroactive compounds did not interfere with the sensor's current response. The suitability of the developed sensor for real sample analysis was also established. Therefore, this study proposed the potential use of Co3O4-ZnO nanorod material in healthcare management for the maintenance of human well-being.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。