Regulated protein stabilization underpins the functional interplay among basal body components in Trypanosoma brucei

调节蛋白质稳定性支撑布氏锥虫基底体成分之间的功能相互作用

阅读:5
作者:Kieu T M Pham, Ziyin Li

Abstract

The basal body in the human parasite Trypanosoma brucei is structurally equivalent to the centriole in animals and functions in the nucleation of axonemal microtubules in the flagellum. T. brucei lacks many evolutionarily conserved centriolar protein homologs and constructs the basal body through unknown mechanisms. Two evolutionarily conserved centriole/basal body cartwheel proteins, TbSAS-6 and TbBLD10, and a trypanosome-specific protein, BBP65, play essential roles in basal body biogenesis in T. brucei, but how they cooperate in the regulation of basal body assembly remains elusive. Here using RNAi, endogenous epitope tagging, immunofluorescence microscopy, and 3D-structured illumination super-resolution microscopy, we identified a new trypanosome-specific protein named BBP164 and found that it has an essential role in basal body biogenesis in T. brucei Further investigation of the functional interplay among BBP164 and the other three regulators of basal body assembly revealed that BBP164 and BBP65 are interdependent for maintaining their stability and depend on TbSAS-6 and TbBLD10 for their stabilization in the basal body. Additionally, TbSAS-6 and TbBLD10 are independent from each other and from BBP164 and BBP65 for maintaining their stability in the basal body. These findings demonstrate that basal body cartwheel proteins are required for stabilizing other basal body components and uncover that regulation of protein stability is an unusual control mechanism for assembly of the basal body in T. brucei.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。