Hydrophobic, Sustainable, High-Barrier Regenerated Cellulose Film via a Simple One-Step Silylation Reaction

通过简单的一步硅烷化反应制备疏水性、可持续、高阻隔性再生纤维素膜

阅读:6
作者:Goomin Kwon, Jisoo Park, Kangyun Lee, Youngsang Ko, Youngho Jeon, Suji Lee, Jeonghun Kim, Jungmok You

Abstract

With the increasing importance of environmental protection, high-performance biopolymer films have received considerable attention as effective alternatives to petroleum-based polymer films. In this study, we developed hydrophobic regenerated cellulose (RC) films with good barrier properties through a simple gas-solid reaction via the chemical vapor deposition of alkyltrichlorosilane. RC films were employed to construct a biodegradable, free-standing substrate matrix, and methyltrichlorosilane (MTS) was used as a hydrophobic coating material to control the wettability and improve the barrier properties of the final films. MTS readily coupled with hydroxyl groups on the RC surface through a condensation reaction. We demonstrated that the MTS-modified RC (MTS/RC) films were optically transparent, mechanically strong, and hydrophobic. In particular, the obtained MTS/RC films exhibited a low oxygen transmission rate of 3 cm3/m2 per day and a low water vapor transmission rate of 41 g/m2 per day, which are superior to those of other hydrophobic biopolymer films.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。