Host and viral proteins involved in SARS-CoV-2 infection differentially bind heme

参与 SARS-CoV-2 感染的宿主和病毒蛋白与血红素的结合存在差异

阅读:5
作者:Marie-T Hopp, Dhruv C Rathod, Diana Imhof

Abstract

In most severe cases, SARS-CoV-2-induced autoimmune reactions have been associated with hemolytic complications. Hemolysis-derived heme from ruptured red blood cells has been shown to trigger a variety of fatal proinflammatory and procoagulant effects, which might deteriorate the progression of COVID-19. In addition, the virus itself can induce proinflammatory signals via the accessory protein 7a. Direct heme binding to the SARS-CoV-2 protein 7a ectodomain and other COVID-19-related proteins has been suggested earlier. Here, we report the experimental analysis of heme binding to the viral proteins spike glycoprotein, protein 7a as well as the host protein ACE2. Thus, protein 7a chemical synthesis was established, including an in-depth analysis of the three different disulfide-bonded isomers. Surface plasmon resonance spectroscopy and in silico studies confirm a transient, biphasic binding behavior, and heme-binding affinities in the nano- to low micromolar range. These results confirm the presence of the earlier identified heme-binding motifs and emphasize the relevance for consideration of labile heme in preexisting or SARS-CoV-2-induced hemolytic conditions in COVID-19 patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。