Ammonia elimination from protonated nucleobases and related synthetic substrates

质子化核碱基和相关合成底物中的氨消除

阅读:5
作者:Ming Qian, Shuo Yang, Hong Wu, Papiya Majumdar, Nathan Leigh, Rainer Glaser

Abstract

The results are reported of mass-spectrometric studies of the nucleobases adenine 1h (1, R = H), guanine 2h, and cytosine 3h. The protonated nucleobases are generated by electrospray ionization of adenosine 1r (1, R = ribose), guanosine 2r, and deoxycytidine 3d (3, R = deoxyribose) and their fragmentations were studied with tandem mass spectrometry. In contrast to previous EI-MS studies of the nucleobases, NH(3) elimination does present a major path for the fragmentations of the ions [1h + H](+), [2h + H](+), and [3h + H](+). The ion [2h + H - NH(3)](+) also was generated from the acyclic precursor 5-cyanoamino-4-oxomethylene-dihydroimidazole 13h and from the thioether derivative 14h of 2h (NH(2) replaced by MeS). The analyses of the modes of initial fragmentation is supported by density functional theoretical studies. Conjugate acids 15-55 were studied to determine site preferences for the protonations of 1h, 2h, 3h, 13h, and 14h. The proton affinity of the amino group hardly ever is the substrate's best protonation site, and possible mechanisms for NH(3) elimination are discussed in which the amino group serves as the dissociative protonation site. The results provide semi-direct experimental evidence for the existence of the pyrimidine ring-opened cations that we had proposed on the basis of theoretical studies as intermediates in nitrosative nucleobase deamination.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。