DRP1 promotes lactate utilization in KRAS-mutant non-small-cell lung cancer cells

DRP1 促进 KRAS 突变非小细胞肺癌细胞中的乳酸利用

阅读:4
作者:Mangze Hu, Yu Zhao, Yuejiao Cao, Qianru Tang, Ziqin Feng, Jun Ni, Xiaorong Zhou

Abstract

Metabolic alterations are well documented in various cancers. Non-small-cell lung cancers (NSCLCs) preferentially use lactate as the primary carbon source, but the underlying mechanisms are not well understood. We developed a lactate-dependent cell proliferation assay and found that dynamin-related protein (DRP1), which is highly expressed in KRAS-mutant NSCLC, is required for tumor cells to proliferate and uses lactate as fuel, demonstrating the critical role of DRP1 in the metabolic reprogramming of NSCLC. Metabolic and transcriptional profiling suggests that DRP1 orchestrates a supportive metabolic network to promote lactate utilization and redox homeostasis in lung cancer cells. DRP1 suppresses the production of reactive oxygen species (ROS) and protects cells against oxidative damage by enhancing lactate utilization. Moreover, targeting DRP1 not only reduces HSP90 expression but also enhances ROS-induced HSP90 cleavage, thus inhibiting activation of mitogen activated protein kinase and PI3K pathways and leading to suppressed lactate utilization and increased ROS-induced cell death. Taken together, these results suggest that DRP1 is a crucial regulator of lactate metabolism and redox homeostasis in KRAS-mutant lung cancer, and that targeting lactate utilization by modulating DRP1 activity might be an effective treatment for lung cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。