Macrolide resistance through uL4 and uL22 ribosomal mutations in Pseudomonas aeruginosa

铜绿假单胞菌通过 uL4 和 uL22 核糖体突变产生大环内酯类耐药性

阅读:5
作者:Lise Goltermann, Pablo Laborda, Oihane Irazoqui, Ivan Pogrebnyakov, Maria Pals Bendixen, Søren Molin, Helle Krogh Johansen, Ruggero La Rosa

Abstract

Macrolides are widely used antibiotics for the treatment of bacterial airway infections. Due to its elevated minimum inhibitory concentration in standardized culture media, Pseudomonas aeruginosa is considered intrinsically resistant and, therefore, antibiotic susceptibility testing against macrolides is not performed. Nevertheless, due to macrolides' immunomodulatory effect and suppression of virulence factors, they are used for the treatment of persistent P. aeruginosa infections. Here, we demonstrate that macrolides are, instead, effective antibiotics against P. aeruginosa airway infections in an Air-Liquid Interface (ALI) infection model system resembling the human airways. Importantly, macrolide treatment in both people with cystic fibrosis and primary ciliary dyskinesia patients leads to the accumulation of uL4 and uL22 ribosomal protein mutations in P. aeruginosa which causes antibiotic resistance. Consequently, higher concentrations of antibiotics are needed to modulate the macrolide-dependent suppression of virulence. Surprisingly, even in the absence of antibiotics, these mutations also lead to a collateral reduction in growth rate, virulence and pathogenicity in airway ALI infections which are pivotal for the establishment of a persistent infection. Altogether, these results lend further support to the consideration of macrolides as de facto antibiotics against P. aeruginosa and the need for resistance monitoring upon prolonged macrolide treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。