Polarization of Femtosecond Laser for Titanium Alloy Nanopatterning Influences Osteoblastic Differentiation

飞秒激光对钛合金纳米图案化偏振影响成骨细胞分化

阅读:5
作者:Mathieu Maalouf, Alain Abou Khalil, Yoan Di Maio, Steve Papa, Xxx Sedao, Elisa Dalix, Sylvie Peyroche, Alain Guignandon, Virginie Dumas

Abstract

Ultrashort pulse lasers have significant advantages over conventional continuous wave and long pulse lasers for the texturing of metallic surfaces, especially for nanoscale surface structure patterning. Furthermore, ultrafast laser beam polarization allows for the precise control of the spatial alignment of nanotextures imprinted on titanium-based implant surfaces. In this article, we report the biological effect of beam polarization on human mesenchymal stem cell differentiation. We created, on polished titanium-6aluminum-4vanadium (Ti-6Al-4V) plates, a laser-induced periodic surface structure (LIPSS) using linear or azimuthal polarization of infrared beams to generate linear or radial LIPSS, respectively. The main difference between the two surfaces was the microstructural anisotropy of the linear LIPSS and the isotropy of the radial LIPSS. At 7 d post seeding, cells on the radial LIPSS surface showed the highest extracellular fibronectin production. At 14 days, qRT-PCR showed on the same surface an increase in osteogenesis-related genes, such as alkaline phosphatase and osterix. At 21 d, mineralization clusters indicative of final osteoinduction were more abundant on the radial LIPSS. Taken together, we identified that creating more isotropic than linear surfaces enhances cell differentiation, resulting in an improved osseointegration. Thus, the fine tuning of ultrashort pulse lasers may be a promising new route for the functionalization of medical implants.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。