Structure and function of the juxtamembrane GAF domain of potassium biosensor KdpD

钾生物传感器 KdpD 近膜 GAF 结构域的结构和功能

阅读:5
作者:Shivesh Kumar, Richard E Gillilan, Dinesh A Yernool

Abstract

KdpD/KdpE two-component signaling system regulates expression of a high affinity potassium transporter responsible for potassium homeostasis. The C-terminal module of KdpD consists of a GAF domain linked to a histidine kinase domain. Whereas certain GAF domains act as regulators by binding cyclic nucleotides, the role of the juxtamembrane GAF domain in KdpD is unknown. We report the high-resolution crystal structure of KdpD GAF domain (KdpDG ) consisting of five α-helices, four β-sheets and two large loops. KdpDG forms a symmetry-related dimer, wherein parallelly arranged monomers contribute to a four-helix bundle at the dimer-interface, SAXS analysis of KdpD C-terminal module reveals an elongated structure that is a dimer in solution. Substitution of conserved residues with various residues that disrupt the dimer interface produce a range of effects on gene expression demonstrating the importance of the interface in inactive to active transitions during signaling. Comparison of ligand binding site of the classic cyclic nucleotide-binding GAF domains to KdpDG reveals structural differences arising from naturally occurring substitutions in primary sequence of KdpDG that modifies the canonical NKFDE sequence motif required for cyclic nucleotide binding. Together these results suggest a structural role for KdpDG in dimerization and transmission of signal to the kinase domain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。