Effects of dietary Docosahexaenoic, training and acute exercise on lipid mediators

膳食二十二碳六烯酸、训练和急性运动对脂质介质的影响

阅读:4
作者:X Capó, M Martorell, A Sureda, J A Tur, A Pons

Background

Eicosanoids mediate initiation and resolution of inflammation. Our

Conclusions

The increase of PGE1 plasma levels after training promoted systemic anti-inflammatory and vasodilator environment. Exercise and DHA supplementation acted synergistically by increasing plasma PGE2 with anti-inflammatory effects. Exercise primed PBMCs to enhance PGE1, PGE2 and RvD1 production in response to LPS.

Methods

Fifteen male footballers were distributed to placebo and experimental groups. Experimental group consumed DHA-enriched beverage (1.16 g DHA/day) for 8 weeks, placebo group consumed a placebo beverage. Blood samples were taken before and after the nutritional intervention in basal conditions and 2 h after acute exercise.

Results

Training increased basal Prostaglandin E1 (PGE1) plasma levels and PBMCs cyclooxygenase 2 (COX-2) protein levels in both groups, but COX-1 protein levels only in the experimental group. Acute exercise increased plasma PGE2 and PBMCs active NFκβ levels. Lipopolysaccharide (LPS)-stimulated PBMCs increases eicosanoids production (PGE1, PGE2, RvD1) in both groups and increased LPS-stimulated PBMCs active NFκβ. DHA supplementation increased COX-2 levels but decreased LPS-stimulated PBMCs PGE1 and PGE2 production. Neither DHA supplementation nor acute exercise altered the expression of NFκβ, COX-2, 15-LOX2, 5-LOX, or IL-1β genes in PBMCs. Conclusions: The increase of PGE1 plasma levels after training promoted systemic anti-inflammatory and vasodilator environment. Exercise and DHA supplementation acted synergistically by increasing plasma PGE2 with anti-inflammatory effects. Exercise primed PBMCs to enhance PGE1, PGE2 and RvD1 production in response to LPS.

Trial registration

The project was registered at ClinicalTrial.gov (NCT02177383).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。