Effect of zinc supplementation on growth performance, intestinal development, and intestinal barrier function in Pekin ducks with lipopolysaccharide challenge

补锌对脂多糖诱发的北京鸭生长性能、肠道发育和肠道屏障功能的影响

阅读:4
作者:Yueqin Xie, Min Wen, Hua Zhao, Guangmang Liu, Xiaoling Chen, Gang Tian, Jingyi Cai, Gang Jia

Abstract

This study was conducted to investigate the influence of zinc (Zn) supplementation on growth performance, intestinal development and intestinal barrier function in Pekin ducks. A total of 480, one-day-old male Pekin ducks were divided into 6 groups with 8 replicates: 0 mg/kg Zn, 0 mg/kg Zn +0.5 mg/kg lipopolysaccharide (LPS), 30 mg/kg Zn, 30 mg/kg Zn +0.5 mg/kg LPS, 120 mg/kg Zn, 120 mg/kg Zn +0.5 mg/kg LPS. The duck primary intestinal epithelial cells (DIECs) were divided into 6 groups: D-Zn (Zinc deficiency, treated with 2 µmol/L zinc Chelator TPEN), A-Zn (Adequate Zinc, basal medium), H-Zn (High level of Zn, supplemented with 20 µmol/L Zn), D-Zn + 20 µg/mL LPS, A-Zn + 20 µg/mL LPS, H-Zn + 20 µg/mL LPS. The results were as follows: in vivo, with Zn supplementation of 120 mg/kg reduced LPS-induced decrease of growth performance and intestine damage (P < 0.05), and increased intestinal digestive enzyme activity of Pekin ducks (P < 0.05). In addition, Zn supplementation also attenuated LPS-induced intestinal epithelium permeability (P < 0.05), inhibited LPS-induced the expression of proinflammatory cytokines and apoptosis-related genes (P < 0.05), as well as reduced LPS-induced the intestinal stem cells mobilization of Pekin ducks (P < 0.05). In vitro, 20 µmol/L Zn inhibited LPS-induced expression of inflammatory factors and apoptosis-related genes (P < 0.05), promoted the expression of cytoprotection-related genes, and attenuated LPS-induced intestinal epithelium permeability in DIECs (P < 0.05). Mechanistically, 20 µmol/L Zn enhanced tight junction protein markers including CLDN-1, OCLD, and ZO-1 both at protein and mRNA levels (P < 0.05), and also increased the level of phosphorylation of TOR protein (P < 0.05) and activated the TOR signaling pathway. In conclusion, Zn improves growth performance, digestive enzyme activity, and intestinal barrier function of Pekin ducks. Importantly, Zn also reverses LPS-induced intestinal barrier damage via enhancing the expression of tight junction proteins and activating the TOR signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。