Effects of wheat bran in comparison to antibiotics on growth performance, intestinal immunity, barrier function, and microbial composition in broiler chickens

麦麸与抗生素对肉鸡生长性能、肠道免疫、屏障功能和微生物组成的影响

阅读:5
作者:Q H Shang, S J Liu, T F He, H S Liu, S Mahfuz, X K Ma, X S Piao

Abstract

This experiment was conducted to evaluate the effects of wheat bran (WB) and antibiotics on growth performance, intestinal immunity, barrier function, and microbial composition in broiler chickens. A total of 168 one-day-old male Arbor Acre chicks were allocated to 3 treatments consisting of 7 replicates with 8 birds per replicate. The 3 treatments were: an antibiotic-free control diet (control, CON), CON + 75 mg/kg chlortetracycline as an antibiotic growth promoter (AGP), and CON + 3% WB. Birds fed AGP and WB had greater (P < 0.05) ADG during days 1 to 21 and lower (P < 0.05) feed-to-gain ratio during each phase than those fed CON. The WB supplementation reduced (P < 0.05) serum concentrations of tumor necrosis factor-α and diamine oxidase activity compared with CON on both day 21 and 42. The AGP and WB supplementation decreased (P < 0.05) interleukin-1β concentration in jejunal mucosa on day 21 and increased (P < 0.05) secretory immunoglobulin A concentration in jejunal mucosa on day 21 and 42. The relative expression of occludin in jejunal mucosa was upregulated (P < 0.05) in WB than in CON on day 21. Moreover, both AGP and WB supplementation upregulated (P < 0.05) the relative expression of zonula occludens-1 in jejunal mucosa on day 21 and 42. The WB supplementation enhanced the α-diversity of cecal microbiota, as evidenced by the increased Shannon index (P < 0.05). At the phylum level, the phylum Firmicutes was enriched (P < 0.05) in WB. At the genus level, the WB supplementation enriched (P < 0.05) Lachnoclostridium and Butyricicoccus. The WB supplementation increased (P < 0.05) cecal total short chain fatty acids concentrations on day 21 and 42, and butyric acid concentrations on day 42 compared with CON. Collectively, supplementation of 3% WB could promote growth by improving intestinal immunity, barrier function, and microbial composition in broilers. Thus, WB may have a role in replacing antibiotics for improved growth performance and intestinal health in broilers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。