Effect of synbiotics on thyroid hormones, intestinal histomorphology, and heat shock protein 70 expression in broiler chickens reared under cyclic heat stress

合生元对周期性热应激条件下肉鸡甲状腺激素、肠道组织形态及热休克蛋白70表达的影响

阅读:5
作者:S Jiang, A A Mohammed, J A Jacobs, T A Cramer, H W Cheng

Abstract

This study examined effect of a dietary synbiotic supplement on the concentrations of plasma thyroid hormones, expressions of heat shock protein 70 (HSP70), and intestinal histomorphology in broiler chickens exposed to cyclic heat stress (HS). Three hundred and sixty day old male Ross 708 broiler chicks were randomly distributed among 3 dietary treatments containing a synbiotic (PoultryStar meUS) at 0 (control), 0.5 (0.5×), and 1.0 (1.0×) g/kg. Each treatment contained 8 replicates of 15 birds each housed in floor pens in a temperature and lighting controlled room. Heat stimulation was established from days 15 to 42 at 32°C for 9 h daily. The results indicated that under the HS condition, both synbiotic fed groups had lower liver and hypothalamus HSP70 levels (P < 0.001) compared to control group; however, HSP70 mRNA expression was not different among treatments (P > 0.05). There were no treatment effects on the levels of triiodothyronine (T3) and thyroxine (T4) as well as T3/T4 ratio (P > 0.05). Compared to controls, 1.0× HS broilers had greater villus height in the duodenum (P < 0.01), and greater villus height and villus height:crypt depth ratios in the ileum (P < 0.01). There were no differences among treatments on the measured intestinal parameters in the jejunum (P > 0.05). The results suggest that the synbiotic may ameliorate the negative effects of HS on chicken health as indicated by the changes in the intestinal architecture and the levels of HSP70. Dietary synbiotic supplement could be a feasible nutritive strategy for the poultry industry to improve the health and welfare of chickens when exposed to hot environmental temperature.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。