Gene clustering and copy number variation in alkaloid metabolic pathways of opium poppy

罂粟生物碱代谢途径基因聚类及拷贝数变异

阅读:5
作者:Qiushi Li, Sukanya Ramasamy, Pooja Singh, Jillian M Hagel, Sonja M Dunemann, Xue Chen, Rongji Chen, Lisa Yu, Joseph E Tucker, Peter J Facchini, Sam Yeaman

Abstract

Genes in plant secondary metabolic pathways enable biosynthesis of a range of medically and industrially important compounds, and are often clustered on chromosomes. Here, we study genomic clustering in the benzylisoquinoline alkaloid (BIA) pathway in opium poppy (Papaver somniferum), exploring relationships between gene expression, copy number variation, and metabolite production. We use Hi-C to improve the existing draft genome assembly, yielding chromosome-scale scaffolds that include 35 previously unanchored BIA genes. We find that co-expression of BIA genes increases within clusters and identify candidates with unknown function based on clustering and covariation in expression and alkaloid production. Copy number variation in critical BIA genes correlates with stark differences in alkaloid production, linking noscapine production with an 11-gene deletion, and increased thebaine/decreased morphine production with deletion of a T6ODM cluster. Our results show that the opium poppy genome is still dynamically evolving in ways that contribute to medically and industrially important phenotypes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。