Ylehd, an epoxide hydrolase with promiscuous haloalkane dehalogenase activity from tropical marine yeast Yarrowia lipolytica is induced upon xenobiotic stress

Ylehd 是一种来自热带海洋酵母 Yarrowia lipolytica 的环氧化物水解酶,具有混杂卤代烷脱卤酶活性,在外来化合物应激下被诱导

阅读:5
作者:Chandrika Bendigiri, Smita Zinjarde, Ameeta RaviKumar

Abstract

Recalcitrant environmental pollutants, like bromoorganics and epoxides are hydrolysed with limited substrate specificities by microbial oxygenases, reductases, hydrolases and dehalogenases. Here, we report the identification and characterisation of a protein (XP_504164) from the tropical marine yeast Yarrowia lipolytica NCIM 3589, known to degrade bromoorganics and epoxides. Multiple sequence alignment suggests it belongs to α/β superfamily with conservation of catalytic triad and oxyanion hole motifs. The corresponding gene cloned and protein (Ylehd) expressed in E. coli BL21AI exhibited epoxide hydrolase activity (24 ± 0.7 nmol s-1 mg-1 protein) at pH 8.0 and promiscuous haloalkane dehalogenase (1.5 ± 0.2 nmol s-1 mg-1 protein) at pH 4.5. Recombinant Ylehd catalyses structurally diverse epoxides and bromoorganics with maximum catalytic efficiency (kcat/Km) of 96.56 and 10.1 mM-1 s-1 towards 1,2-Epoxyoctane (EO) and 1-Bromodecane (BD). The expression of Ylehd was highly induced in presence of BD and EO but not in glucose grown cells as studied by immunoblot analyses, q-PCR and activity levels. Immunoelectron microscopy confirmed higher expression in presence of xenobiotics and located it to cytosol. Such inducible nature of Ylehd suggests its physiological role in xenobiotic stress mitigation. This study represents the first functional characterisation of a bifunctional EH/HLD in eukaryotic microbes with broad substrate specificity making it a potential biocatalyst for bioremediation/biosensing of mixed pollutants.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。