Improvement of Endothelial Dysfunction of Berberine in Atherosclerotic Mice and Mechanism Exploring through TMT-Based Proteomics

小檗碱改善动脉粥样硬化小鼠内皮功能障碍及基于TMT的蛋白质组学机制探讨

阅读:4
作者:Wangxiao Tan, Yu Wang, Kaiyue Wang, Siwei Wang, Jinghua Liu, Xiaoyan Qin, Yongna Dai, Xiaoying Wang, Xiumei Gao

Abstract

Atherosclerosis is a multifactorial vascular disease triggered by disordered lipid metabolism, characterized by chronic inflammatory injury, and initiated by endothelial dysfunction. Berberine is the main active alkaloid of the herbal medicine Coptidis Rhizoma (Huanglian). Notably, berberine has been shown to have beneficial effects against atherosclerosis. However, the mechanisms of berberine in preventing atherosclerosis are still unclear. This study is aimed at investigating the effects and mechanisms of berberine in protecting the aorta and ameliorating atherosclerosis in apolipoprotein E-deficient (ApoE-/-) mice. Here, we demonstrated that berberine reduced serum lipid levels, antagonized hepatic lipid accumulation, improved intima-media thickening, and alleviated atherosclerotic lesions in ApoE-/- mice fed a western-type diet for 12 weeks. Meanwhile, berberine reduced aortic reactive oxygen species (ROS) generation and reduced the serum levels of malondialdehyde (MDA), oxidized low-density lipoprotein (ox-LDL), and interleukin-6 (IL-6). In aortic ring assay, berberine restored aortic endothelium-dependent vasodilatation in vivo and in vitro. Furthermore, 4,956 proteins were identified by proteomic analysis, and 199 differentially expressed proteins regulated by berberine were found to be involved in many biological pathways, such as mitochondrial dysfunction, fatty acid β-oxidation I, and FXR/RXR activation. Summarily, these data suggested that berberine ameliorates endothelial dysfunction and protects against atherosclerosis, and thus may be a promising therapeutic candidate for atherosclerosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。