Melatonin ameliorates myocardial ischemia/reperfusion injury in type 1 diabetic rats by preserving mitochondrial function: role of AMPK-PGC-1α-SIRT3 signaling

褪黑素通过保护线粒体功能改善 1 型糖尿病大鼠心肌缺血/再灌注损伤:AMPK-PGC-1α-SIRT3 信号传导的作用

阅读:5
作者:Liming Yu, Bing Gong, Weixun Duan, Chongxi Fan, Jian Zhang, Zhi Li, Xiaodong Xue, Yinli Xu, Dandan Meng, Buying Li, Meng Zhang, Bin Zhang, Zhenxiao Jin, Shiqiang Yu, Yang Yang, Huishan Wang

Abstract

Enhancing mitochondrial biogenesis and reducing mitochondrial oxidative stress have emerged as crucial therapeutic strategies to ameliorate diabetic myocardial ischemia/reperfusion (MI/R) injury. Melatonin has been reported to be a safe and potent cardioprotective agent. However, its role on mitochondrial biogenesis or reactive oxygen species (ROS) production in type 1 diabetic myocardium and the underlying mechanisms remain unknown. We hypothesize that melatonin ameliorates MI/R injury in type 1 diabetic rats by preserving mitochondrial function via AMPK-PGC-1α-SIRT3 signaling pathway. Both our in vivo and in vitro data showed that melatonin reduced MI/R injury by improving cardiac function, enhancing mitochondrial SOD activity, ATP production and oxidative phosphorylation complex (II, III and IV), reducing myocardial apoptosis and mitochondrial MDA, H2O2 generation. Importantly, melatonin also activated AMPK-PGC-1α-SIRT3 signaling and increased SOD2, NRF1 and TFAM expressions. However, these effects were abolished by Compound C (a specific AMPK signaling blocker) administration. Additionally, our cellular experiment showed that SIRT3 siRNA inhibited the cytoprotective effect of melatonin without affecting p-AMPK/AMPK ratio and PGC-1α expression. Taken together, we concluded that melatonin preserves mitochondrial function by reducing mitochondrial oxidative stress and enhancing its biogenesis, thus ameliorating MI/R injury in type 1 diabetic state. AMPK-PGC1α-SIRT3 axis plays an essential role in this process.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。