Exploring differential exon usage via short- and long-read RNA sequencing strategies

通过短读和长读 RNA 测序策略探索差异外显子使用情况

阅读:5
作者:Dena Leshkowitz, Merav Kedmi, Yael Fried, David Pilzer, Hadas Keren-Shaul, Elena Ainbinder, Bareket Dassa

Abstract

Alternative splicing produces various mRNAs, and thereby various protein products, from one gene, impacting a wide range of cellular activities. However, accurate reconstruction and quantification of full-length transcripts using short-reads is limited, due to their length. Long-reads sequencing technologies may provide a solution by sequencing full-length transcripts. We explored the use of both Illumina short-reads and two long Oxford Nanopore Technology (cDNA and Direct RNA) RNA-Seq reads for detecting global differential splicing during mouse embryonic stem cell differentiation, applying several bioinformatics strategies: gene-based, isoform-based and exon-based. We detected the strongest similarity among the sequencing platforms at the gene level compared to exon-based and isoform-based. Furthermore, the exon-based strategy discovered many differential exon usage (DEU) events, mostly in a platform-dependent manner and in non-differentially expressed genes. Thus, the platforms complemented each other in the ability to detect DEUs (i.e. long-reads exhibited an advantage in detecting DEUs at the UTRs, and short-reads detected more DEUs). Exons within 20 genes, detected in one or more platforms, were here validated by PCR, including key differentiation genes, such as Mdb3 and Aplp1. We provide an important analysis resource for discovering transcriptome changes during stem cell differentiation and insights for analysing such data.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。