Blocking fibrotic signaling in fibroblasts from patients with carpal tunnel syndrome

阻断腕管综合征患者成纤维细胞中的纤维化信号

阅读:6
作者:Yoshiaki Yamanaka, Anne Gingery, Gosuke Oki, Tai-Hua Yang, Chunfeng Zhao, Peter C Amadio

Abstract

Fibrosis of the subsynovial connective tissue (SSCT) in carpal tunnel syndrome (CTS) patients is increasingly recognized as an important aspect of CTS pathophysiology. In this study, we evaluated the effect of blocking profibrotic pathways in fibroblasts from the SSCT in CTS patients. Fibroblasts were stimulated with transforming growth factor β1 (TGF-β1), and then treated either with a specific fibrosis pathway inhibitor targeting TGF-β receptor type 1 (TβRI), platelet-derived growth factor receptor (PDGFR), epidermal growth factor receptor (EGFR), or vascular endothelial growth factor receptor (VEGFR). Fibrosis array and quantitative real-time polymerase chain reaction of fibrotic genes were evaluated. Array gene expression analysis revealed significant down-regulation of multiple fibrotic genes after treatment with TβRI, PDGFR, and VEGFR inhibitors. No array fibrotic genes were significantly down-regulated with EGFR inhibition. Further gene expression analysis of known CTS fibrosis markers collagen type I A2 (Col1), collagen type III A1 (Col3), connective tissue growth factor (CTGF), and SERPINE1 showed significantly down-regulation after TβRI inhibition. In contrast, VEGFR inhibition significantly down-regulated CTGF and SERPINE1, whereas, PDGFR and EGFR inhibition significantly down-regulated Col3. Taken together the inhibition of TβRI appears to be the primary mediator of fibrotic gene expression in fibroblasts from CTS patients. TGF-β/Smad activity was further evaluated, and as expected inhibition of Smad activity was significantly down-regulated after inhibition of TβRI, but not with PDGFR, VEGFR, or EGFR inhibition. These results indicate that local therapies specifically targeting TGF-β signaling alone or in combination offer the potential of a novel local antifibrosis therapy for patients with CTS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。