Ras mutation impairs epithelial barrier function to a wide range of nonelectrolytes

Ras 突变损害上皮对多种非电解质的屏障功能

阅读:6
作者:James M Mullin, James M Leatherman, Mary Carmen Valenzano, Erika Rendon Huerta, Jon Verrechio, David M Smith, Karen Snetselaar, Mantao Liu, Mary Kay Francis, Christian Sell

Abstract

Although ras mutations have been shown to affect epithelial architecture and polarity, their role in altering tight junctions remains unclear. Transfection of a valine-12 mutated ras construct into LLC-PK1 renal epithelia produces leakiness of tight junctions to certain types of solutes. Transepithelial permeability of D-mannitol increases sixfold but transepithelial electrical resistance increases >40%. This indicates decreased paracellular permeability to NaCl but increased permeability to nonelectrolytes. Permeability increases to D-mannitol (Mr 182), polyethylene glycol (Mr 4000), and 10,000-Mr methylated dextran but not to 2,000,000-Mr methylated dextran. This implies a "ceiling" on the size of solutes that can cross a ras-mutated epithelial barrier and therefore that the increased permeability is not due to loss of cells or junctions. Although the abundance of claudin-2 declined to undetectable levels in the ras-overexpressing cells compared with vector controls, levels of occludin and claudins 1, 4, and 7 increased. The abundance of claudins-3 and -5 remained unchanged. An increase in extracellular signal-regulated kinase-2 phosphorylation suggests that the downstream effects on the tight junction may be due to changes in the mitogen-activated protein kinase signaling pathway. These selective changes in permeability may influence tumorigenesis by the types of solutes now able to cross the epithelial barrier.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。