Data for the cytotoxicity, self-assembling properties and synthesis of 4-pyridinium-1,4-dihydropyridines

4-吡啶-1,4-二氢吡啶的细胞毒性、自组装特性和合成数据

阅读:5
作者:Klavs Pajuste, Martins Rucins, Ilona Domracheva, Arkadij Sobolev, Nadiia Pikun, Mara Plotniece, Gunars Duburs, Karlis Pajuste, Aiva Plotniece

Abstract

In this data file the synthetic procedures for preparation of the original 4-pyridinium-1,4-dihydropyridines (4-Py-1,4-DHP) and their parent compounds - dialkyl 2,6-dimethyl-4-(3-pyridyl)-1,4-dihydropyridine-3,5-dicarboxylates were described. In total, 5 unpublished compounds were obtained and characterised. All the structures of original compounds were confirmed by Nuclear Magnetic Resonance (NMR, including 1H NMR and 13C NMR) and low resolution mass spectra (MS) data. Additionally, the cytotoxic properties of four 4-Py-1,4-DHPs were evaluated on 3 cell lines - normal NIH3T3 (mouse embryonic fibroblast), cancerous HT-1080 (human lung fibrosarcoma) and MH-22A (mouse hepatoma) and self-assembling properties were studied and characterisation of formed nanoparticles were performed using dynamic light scattering technique. In this article provided data are directly related to the previously published research articles - "Novel cationic amphiphilic 1,4-dihydropyridine derivatives for DNA delivery" [1] where compound 5 was tested as gene delivery agent without full physico-chemical characterisation and "Synthesis and studies of calcium channel blocking and antioxidant activities of novel 4-pyridinium and/or N-propargyl substituted 1,4-dihydropyridine derivatives" [2] where synthesis and physico-chemical characterisation as well as calcium channel blocking and antioxidant activities were described for compound 6. Synthesis of other compounds - parent 1,4-DHPs 1 and 2, and 4-Py-1,4-DHPs 3-5, their characterisation, estimation of cytotoxicity and self-assembling properties for all 4-Py-1,4-DHPs 3-6 are reported herein for the first time. Information provided in this data file can be used in medicinal chemistry by other scientists to estimate structure-activity relationships for the analysis and construction of various cationic 1,4-dihydropyridine derivatives and related heterocycles.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。