Identification of linear B cell epitopes on the E146L protein of African swine fever virus with monoclonal antibodies

利用单克隆抗体鉴定非洲猪瘟病毒E146L蛋白的线性B细胞表位

阅读:7
作者:Shu-Jian Zhang, Bei Niu, Shi-Meng Liu, Zhi-Gao Bu, Rong-Hong Hua

Abstract

The outbreak and spread of African swine fever virus (ASFV) have caused considerable economic losses to the pig industry worldwide. Currently, to promote the development of effective ASF vaccines, especially subunit vaccines, more antigenic protein targets are urgently needed. In this work, six transmembrane proteins (I329L, E146L, C257L, EP153R, I177L, and F165R) were expressed in mammalian cell lines and screened with pig anti-ASFV serum. It was found that the E146L protein was an immunodominant protein antigen among the six selected proteins. Moreover, the E146L protein induced antibody responses in all immunized pigs. To gain insight into the antigenic characteristics of the E146L protein, three monoclonal antibodies (mAbs; 12H12, 15G1, and 15H10) were generated by immunizing BALB/c mice with the purified E146L protein. The epitopes of the mAbs were further finely mapped through a peptide fusion protein expression strategy. Finally, the epitopes of the mAbs were identified as 48PDESSIAYMRFRN61 of the mAb 12H12, 138TLTGLQRII146 of the mAb 15G1, and 30GWSPFKYSKGNT41 of the mAb 15H10. Furthermore, the epitope of mAb 15H10 was validated as the immunodominant epitope with ASFV-infected pig sera. The chemically synthesized mAb 15H10 epitope peptide (EP1) exhibited the most extensive immunoreactivity with artificially or naturally ASFV-infected pig sera. The epitope 15H10 is located on the surface of the E146L protein and is highly conserved. These findings provide insight into the structure and function of the E146L protein of ASFV.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。