The endoplasmic reticulum contributes to lysosomal tubulation/sorting driven by LRRK2

内质网参与 LRRK2 驱动的溶酶体管化/分选

阅读:6
作者:Luis Bonet-Ponce, Mark R Cookson

Abstract

Lysosomes are dynamic organelles that can remodel their membrane as an adaptive response to various cell signaling events including membrane damage. Recently, we have discovered that damaged lysosomes form and sort tubules into moving vesicles. We named this process LYTL for LYsosomal Tubulation/sorting driven by LRRK2, as the Parkinson's disease protein LRRK2 promotes tubulation by recruiting the motor adaptor protein JIP4 to lysosomes via phosphorylated RAB proteins. Here we use spinning-disk microscopy combined with superresolution to further characterize LYTL after membrane damage with LLOMe (l-leucyl-l-leucine methyl ester). We identified the endoplasmic reticulum (ER) colocalizing with sites of fission of lysosome-derived tubules. In addition, modifying the morphology of the ER by reducing ER tubules leads to a decrease in LYTL sorting, suggesting that contact with tubular ER is necessary for lysosomal membrane sorting. Given the central roles of LRRK2 and lysosomal biology in Parkinson's disease, these discoveries are likely relevant to disease pathology and highlight interactions between organelles in this model.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。