Structure-based identification of a potential non-catalytic binding site for rational drug design in the fructose 1,6-biphosphate aldolase from Giardia lamblia

基于结构鉴定蓝氏贾第鞭毛虫果糖 1,6-二磷酸醛缩酶中潜在的非催化结合位点,用于合理药物设计

阅读:7
作者:Sara-Teresa Méndez, Adriana Castillo-Villanueva, Karina Martínez-Mayorga, Horacio Reyes-Vivas, Jesús Oria-Hernández

Abstract

Giardia lamblia is the causal agent of giardiasis, one of the most prevalent parasitosis in the world. Even though effective pharmacotherapies against this parasite are available, the disadvantages associated with its use call for the development of new antigiardial compounds. Based on the Giardia dependence on glycolysis as a main energy source, glycolytic enzymes appear to be attractive targets with antiparasitic potential. Among these, fructose 1,6-biphosphate aldolase (GlFBPA) has been highlighted as a promising target for drug design. Current efforts are based on the design of competitive inhibitors of GlFBPA; however, in the kinetic context of metabolic pathways, competitive inhibitors seem to have low potential as therapeutic agents. In this work, we performed an experimental and in silico structure-based approach to propose a non-catalytic binding site which could be used as a hot spot for antigardial drug design. The druggability of the selected binding site was experimentally tested; the alteration of the selected region by site directed mutagenesis disturbs the catalytic properties and the stability of the enzyme. A computational automated search of binding sites supported the potential of this region as functionally relevant. A preliminary docking study was performed, in order to explore the feasibility and type of molecules to be able to accommodate in the proposed binding region. Altogether, the results validate the proposed region as a specific molecular binding site with pharmacological potential.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。