Conclusions
This parametric computer study represents a further step toward an improved understanding of the biomechanical outcomes of transapical neochordae technologies.
Methods
Transapical neochordae implantation using 3 and 4 sutures was computer simulated under 3 posterior mitral leaflet prolapse conditions: isolated P2, multiscallop P2/P3 and multiscallop P2/P1. Physiologic, pre- and postrepair left heart dynamics were evaluated using a fluid-structure interaction modeling framework.
Results
Despite the absence of residual mitral regurgitation in all postrepair models with optimal neochordae length, selecting an antero-lateral apical entry site for the treatment of P2/P3 prolapse generated a significant increase (>80%) in neochordae tension and P2 peak stress, with respect to a postero-lateral entry site. During isolated P2 prolapse repair, although neochordae overtension by 5% led to minimal hemodynamic changes in the regurgitant volume compared with using an optimal suture length, a significant increase in systolic and diastolic neochordae tension (>300%) and posterior leaflet average stress (70%-460%) was quantified. On the other hand, neochordae undertension by 5% led to worsening of regurgitation severity. Conclusions: This parametric computer study represents a further step toward an improved understanding of the biomechanical outcomes of transapical neochordae technologies.
