The HIV-1 integrase mutant R263A/K264A is 2-fold defective for TRN-SR2 binding and viral nuclear import

HIV-1 整合酶突变体 R263A/K264A 对 TRN-SR2 结合和病毒核输入存在 2 倍缺陷

阅读:11
作者:Stéphanie De Houwer, Jonas Demeulemeester, Wannes Thys, Susana Rocha, Lieve Dirix, Rik Gijsbers, Frauke Christ, Zeger Debyser

Abstract

Transportin-SR2 (Tnpo3, TRN-SR2), a human karyopherin encoded by the TNPO3 gene, has been identified as a cellular cofactor of HIV-1 replication, specifically interacting with HIV-1 integrase (IN). Whether this interaction mediates the nuclear import of HIV remains controversial. We previously characterized the TRN-SR2 binding interface in IN and introduced mutations at these positions to corroborate the biological relevance of the interaction. The pleiotropic nature of IN mutations complicated the interpretation. Indeed, all previously tested IN interaction mutants also affected RT. Here we report on a virus with a pair of IN mutations, IN(R263A/K264A), that significantly reduce interaction with TRN-SR2. The virus retains wild-type reverse transcription activity but displays a block in nuclear import and integration, as measured by quantitative PCR. The defect in integration of this mutant resulted in a smaller increase in the number of two-long terminal repeat circles than for virus specifically blocked at integration by raltegravir or catalytic site mutations (IN(D64N/D116N/E152Q)). Finally, using an eGFP-IN-labeled HIV fluorescence-based import assay, the defect in nuclear import was corroborated. These data altogether underscore the importance of the HIV-IN TRN-SR2 protein-protein interaction for HIV nuclear import and validate the IN/TRN-SR2 interaction interface as a promising target for future antiviral therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。