Nanofluidic sensing inspired by the anomalous water dynamics in electrical angstrom-scale channels

受电埃级通道中异常水动力学启发的纳米流体传感

阅读:4
作者:Tianshu Chu, Ze Zhou, Pengfei Tian, Tingting Yu, Cheng Lian, Bowei Zhang, Fu-Zhen Xuan1

Abstract

Manipulation of confined water dynamics by voltage keeps great importance for diverse applications. However, limitations on the membrane functions, voltage-control range, and unclear dynamics need to be addressed. Herein, we report an anomalous electrically controlled gating phenomenon on cation-intercalated multi-layer Ti3C2 membranes and reveal the confined water dynamics. The water permeation rate was improved rapidly following the application and rise of voltage and finally reached a maximum rate at 0.9 V. The permeation rate starts to decrease from 0.9 V. Below 0.9 V, the electric field affects the charge and polarity of water molecules and then leads to ordered and denser rearrangement in the two-dimensional (2D) channel to accelerate the permeation rate. Above 0.9 V, with the assistance of metal cations, the surge in current induced aggregation of water molecules into clusters, thereby limiting the water mobility. Based on these findings, a high-performance humidity sensor was developed by simultaneously optimizing the response and recovery speeds through electric manipulation. This work provides flexible strategies in intelligent membrane design and nanofluidic sensing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。