Macronucleophagy maintains cell viability under nitrogen starvation by modulating micronucleophagy

大核吞噬作用通过调节微核吞噬作用维持氮饥饿条件下的细胞活力

阅读:5
作者:Ziyang Li, Keisuke Mochida, Hitoshi Nakatogawa

Abstract

Lysosome/vacuole-mediated intracellular degradation pathways, collectively known as autophagy, play crucial roles in the maintenance and regulation of various cellular functions. However, little is known about the relationship between different modes of autophagy. In the budding yeast Saccharomyces cerevisiae, nitrogen starvation triggers both macronucleophagy and micronucleophagy, in which nuclear components are degraded via macroautophagy and microautophagy, respectively. We previously revealed that Atg39-mediated macronucleophagy is important for cell survival under nitrogen starvation; however, the underlying mechanism remains unknown. Here, we reveal that defective Atg39-mediated macronucleophagy leads to the hyperactivation of micronucleophagy, resulting in the excessive transport of various nuclear components into the vacuole. Micronucleophagy occurs at the nucleus-vacuole junction (NVJ). We show that nuclear membrane proteins localized to the NVJ, including Nvj1, which is responsible for micronucleophagy, are degraded via macronucleophagy. Therefore, defective Atg39-mediated macronucleophagy results in the accumulation of Nvj1, which contributes to micronucleophagy enhancement. Blocking micronucleophagy almost completely suppresses cell death caused by the absence of Atg39, whereas enhanced micronucleophagy correlates with death in Atg39-mutant cells under nitrogen starvation. These results suggest that macronucleophagy modulates micronucleophagy in order to prevent the excess removal of nuclear components, thereby maintaining nuclear and cellular homeostasis during nitrogen starvation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。