A Streptococcu s aquaporin acts as peroxiporin for efflux of cellular hydrogen peroxide and alleviation of oxidative stress

链球菌的水通道蛋白充当过氧化物酶体,排出细胞过氧化氢并缓解氧化应激

阅读:5
作者:Huichun Tong, Xinhui Wang, Yuzhu Dong, Qingqing Hu, Ziyi Zhao, Yun Zhu, Linxuan Dong, Fan Bai, Xiuzhu Dong

Abstract

Aquaporins (AQPs) are transmembrane proteins widely distributed in various organisms, and they facilitate bidirectional diffusion of water and uncharged solutes. The catalase-negative bacterium Streptococcus oligofermentans produces the highest H2O2 levels reported to date, which has to be exported to avoid oxidative stress. Here, we report that a S. oligofermentans aquaporin functions as a peroxiporin facilitating bidirectional transmembrane H2O2 transport. Knockout of this aquaporin homolog, So-AqpA, reduced H2O2 export by ∼50% and increased endogenous H2O2 retention, as indicated by the cellular H2O2 reporter HyPer. Heterologous expression of So-aqpA accelerated exogenous H2O2 influx into Saccharomyces cerevisiae and Escherichia coli cells, indicating that So-AqpA acts as an H2O2-transferring aquaporin. Alanine substitution revealed Phe-40 as a key residue for So-AqpA-mediated H2O2 transport. Northern blotting, qPCR, and luciferase reporter assays disclosed that H2O2 induces a >10-fold expression of So-aqpA Super-resolution imaging showed that H2O2 treatment increases So-AqpA protein molecules per cell by 1.6- to 3-fold. Inactivation of two redox-regulatory transcriptional repressors, PerR and MntR, reduced H2O2-induced So-aqpA expression to 1.8- and 4-fold, respectively. Electrophoretic mobility shift assays determined that MntR, but not PerR, binds to the So-aqpA promoter, indicating that MntR directly regulates H2O2-induced So-aqpA expression. Importantly, So-aqpA deletion decreased oxic growth and intraspecies competition and diminished the competitive advantages of S. oligofermentans over the caries pathogen Streptococcus mutans Of note, So-aqpA orthologs with the functionally important Phe-40 are present in all streptococci. Our work has uncovered an intrinsic, H2O2-inducible bacterial peroxiporin that has a key physiological role in H2O2 detoxification in S. oligofermentans.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。