Supplementation of spermidine enhances the quality of postovulatory aged porcine oocytes

补充亚精胺可提高排卵后老化猪卵母细胞的质量

阅读:5
作者:Jie Bai #, Yu Zhang #, Na Li, Zhaokang Cui, Hanwen Zhang, Yiting Liu, Yilong Miao, Shaochen Sun, Bo Xiong

Background

Spermidine (SPD) is an intermediate compound in the polyamine metabolism which takes critical part in a variety of cellular processes. In particular, it has been reported to exert anti-aging effects, suppress the age-related diseases, and extend lifespan across species. However, whether it has the favorable influence on the quality of postovulatory aged oocytes remains elusive.

Conclusion

Altogether, our findings demonstrate that SPD supplementation is a feasible approach to ameliorate the quality of postovulatory aged oocytes, which can be potentially applied to the human assisted reproductive technology (ART) and in vitro production of animal embryos.

Methods

Immunostaining and fluorescence intensity measurement were used to evaluate the effects of postovulatory aging and SPD supplementation on the oocyte fragmentation, spindle/chromosome structure, actin polymerization, dynamics of cortical granules (CGs) and ovastacin, mitochondrial distribution and function, as well as autophagy levels. In addition, in vitro sperm binding assay and in vitro fertilization (IVF) experiment were applied to assess the impacts of postovulatory aging and SPD supplementation on the sperm binding ability and fertilization capacity of oocytes.

Results

Here, we showed that supplementation of SPD during postovulatory aging could relieve the deterioration of porcine oocytes. Specifically, we found that postovulatory aging impaired the oocyte quality by damaging the morphological integrity of oocytes, maintenance of spindle/chromosome structure, and dynamics of actin cytoskeleton. Postovulatory aging also weakened the sperm binding ability and fertilization capacity of oocytes by compromising the distribution pattern of CGs and their content ovastacin. Notably, supplementation of SPD attenuated these defects in postovulatory aged porcine oocytes via strengthening mitochondrial function, eliminating excessive reactive oxygen species (ROS), inhibiting apoptosis, and enhancing autophagy levels.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。