Conclusion
A scaffold containing a KLD-12 polypeptide/TGF-β1-nanofiber gel and MSCs differentiated into NP-like cells is able to produce ECM and has the potential to serve as a three-dimensional (3-D) support scaffold for the filling of early postoperative residual cavities and the treatment of intervertebral disc degeneration.
Methods
The release of TGF-β1 from KLD-12 polypeptide gels containing varying TGF-β1 concentrations was detected by ELISA. MSCs were isolated with a density gradient method and their differentiation into NP-like cells was analyzed in KLD-12 polypeptide/TGF-β1- or KLD-12 polypeptide control nanofiber-gel 3D-cultures. The Alcianblue method, Real-time quantitative PCR (RT-qPCR), and immunocytochemistry were used to measure the expression of extracellular matrix (ECM) molecules, such as aggrecan, glycosaminoglycans (GAGs), and type II collagen.
Objective
To develop tissue engineering scaffolds consisting of self-assembling KLD-12 polypeptide/TGF-β1 nanofiber gel, for the induction of mesenchymal stem cell (MSCs) differentiation into nucleus pulposus (NP)-like cells.
Results
ELISA results documented favorable time-dependent release characteristics of TGF-β1 in the KLD-12 polypeptide/TGF-β1 gel scaffolds. The results of CCK-8 cell proliferation assay showed the TGF-β1 containing scaffolds induced higher growth rate in MSCs compared to the control group. Calcein-AM/PI fluorescent staining showed: the cells in the gel grew well, maintaining the circular shape of cells, and the spindle and fusiform shape of cells on the gel edges. The cell viability displayed a survival rate of 89.14% ± 2.468 for the TGF-β1 group with no significant difference between the two groups at 14 d of culture. The production of ECM was monitored showing higher expression of GAGs in the TGF-β1 group (P < 0.01) with highest amounts at 10 d and 14 d compared to 4 d and 7 d (P < 0.05). Real-time PCR results revealed that the expression levels of collagen II and aggrecan mRNA were higher in the TGF-β1 group (P < 0.05). Finally, immunocytochemical staining of collagen II confirmed the higher expression levels.
