Mitogen-induced distinct epialleles are phosphorylated at either H3S10 or H3S28, depending on H3K27 acetylation

丝裂原诱导的不同表观等位基因在 H3S10 或 H3S28 处发生磷酸化,具体取决于 H3K27 乙酰化

阅读:5
作者:Dilshad H Khan, Shannon Healy, Shihua He, Daniel Lichtensztejn, Ludger Klewes, Kiran L Sharma, Veronica Lau, Sabine Mai, Geneviève P Delcuve, James R Davie

Abstract

Stimulation of the MAPK pathway results in mitogen- and stress-activated protein kinase 1/2 (MSK1/2)-catalyzed phosphorylation of histone H3 at serine 10 or 28 and expression of immediate-early (IE) genes. In 10T1/2 mouse fibroblasts, phosphorylation of H3S10 and H3S28 occurs on different H3 molecules and in different nuclear regions. Similarly, we show that mitogen-induced H3S10 and H3S28 phosphorylation occurs in separate pools in human primary fibroblasts. High-resolution imaging studies on both cell types reveal that H3S10 and H3S28 phosphorylation events can be induced in a single cell but on different alleles, giving rise to H3S10ph and H3S28ph epialleles. Coimmunoprecipitation and inhibition studies demonstrate that CBP/p300-mediated H3K27 acetylation is required for MSK1/2 to phosphorylate S28. Although the K9ac and S10ph marks coexist on H3, S10 phosphorylation is not dependent on K9 acetylation by PCAF. We propose that random targeting of H3S10 or H3S28 results from the stochastic acetylation of H3 by CBP/p300 or PCAF, a process comparable to transcriptional bursting causing temporary allelic imbalance. In 10T1/2 cells expressing Jun, at least two of three alleles per cell were induced, a sign of high expression level. The redundant roles of H3S10ph and H3S28ph might enable rapid and efficient IE gene induction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。