Protein-protein interactions that regulate the energy stress activation of sigma(B) in Bacillus subtilis

调节枯草芽孢杆菌中 sigma(B) 能量应激激活的蛋白质-蛋白质相互作用

阅读:4
作者:Olivier Delumeau, Richard J Lewis, Michael D Yudkin

Abstract

Sigma(B) is an alternative sigma factor that controls the general stress response in Bacillus subtilis. In the absence of stress, sigma(B) is negatively regulated by anti-sigma factor RsbW. RsbW is also a protein kinase which can phosphorylate RsbV. When cells are stressed, RsbW binds to unphosphorylated RsbV, produced from the phosphorylated form of RsbV by two phosphatases (RsbU and RsbP) which are activated by stress. We now report the values of the K(m) for ATP and the K(i) for ADP of RsbW (0.9 and 0.19 mM, respectively), which reinforce the idea that the kinase activity of RsbW is directly regulated in vivo by the ratio of these nucleotides. RsbW, purified as a dimer, forms complexes with RsbV and sigma(B) with different stoichiometries, i.e., RsbW(2)-RsbV(2) and RsbW(2)-sigma(B)(1). As determined by surface plasmon resonance, the dissociation constants of the RsbW-RsbV and RsbW-sigma(B) interactions were found to be similar (63 and 92 nM, respectively). Nonetheless, an analysis of the complexes by nondenaturing polyacrylamide gel electrophoresis in competition assays suggested that the affinity of RsbW(2) for RsbV is much higher than that for sigma(B). The intracellular concentrations of RsbV, RsbW (as a monomer), and sigma(B) measured before stress were similar (1.5, 2.6, and 0.9 micro M, respectively). After ethanol stress they all increased. The increase was greatest for RsbV, whose concentration reached 13 micro M, while those of RsbW (as a monomer) and sigma(B) reached 11.8 and 4.9 micro M, respectively. We conclude that the higher affinity of RsbW for RsbV than for sigma(B), rather than a difference in the concentrations of RsbV and sigma(B), is the driving force that is responsible for the switch of RsbW to unphosphorylated RsbV.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。