Oncogenic Adenomatous polyposis coli mutants impair the mitotic checkpoint through direct interaction with Mad2

致癌性腺瘤性结肠息肉突变体通过与 Mad2 直接相互作用损害有丝分裂检查点

阅读:5
作者:Jiayin Zhang, Roberto Neisa, Yinghui Mao

Abstract

The majority of colorectal tumors are aneuploid because of the underlying chromosome instability (CIN) phenotype, in which a defective mitotic checkpoint is implicated. Adenomatous polyposis coli (APC), a tumor suppressor gene that is commonly mutated in colon cancers, has been suggested in causing CIN; however, the molecular mechanism remains unresolved. In this study, we report an interaction of tumor-associated N-terminal APC fragments (N-APC) with Mad2, an essential mitotic checkpoint protein, providing a direct molecular support for linking APC mutations to the generation of CIN. N-APC interacts with Mad2 in Xenopus egg extracts, colon cancer cells, and in vitro with purified components. The interaction between N-APC and Mad2 decreases the soluble pool of Mad2, which is essential for Mad2 cycling and releasing from unattached kinetochores to produce a diffusible |P;wait anaphase|P' signal. Addition of such an N-APC mutant of egg extracts inactivates the mitotic checkpoint. Expressing a tumor-associated N-APC mutant in mammalian cells with an intact mitotic checkpoint produces premature anaphase onset with missegregated chromosomes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。