Transposable element dysregulation in systemic lupus erythematosus and regulation by histone conformation and Hsp90

系统性红斑狼疮中的转座因子失调以及组蛋白构象和 Hsp90 的调节

阅读:5
作者:Maurer Kelly, Shi Lihua, Zhang Zhe, Song Li, Paucar Yoselin, Petri Michelle, E Sullivan Kathleen

Abstract

Systemic lupus erythematosus (SLE) represents an autoimmune disease in which activation of the type I interferon pathway leads to dysregulation of tolerance and the generation of autoantibodies directed against nuclear constituents. The mechanisms driving the activation of the interferon pathway in SLE have been the subject of intense investigation but are still incompletely understood. Transposable elements represent an enormous source of RNA that could potentially stimulate the cell intrinsic RNA-recognition pathway, leading to upregulation of interferons. We used RNA-seq to define transposable element families and subfamilies in three cell types in SLE and found diverse effects on transposable element expression in the three cell types and even within a given family of transposable elements. When potential mechanisms were examined, we found that Hsp90 inhibition could drive increased expression of multiple type of transposable elements. Both direct inhibition and the delivery of a heat shock itself, which redirects heat shock regulators (including Hsp90) off of basal expression promoters and onto heat shock-responsive promoters, led to increased transposable element expression. This effect was amplified by the concurrent delivery of a histone deacetylase inhibitor. We conclude that transposable elements are dysregulated in SLE and there are tissue-specific effects and locus-specific effects. The magnitude of RNAs attributable to transposable elements makes their dysregulation of critical interest in SLE where transposable element RNA complexed with proteins has been shown to drive interferon expression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。