FOXA1 activates NOLC1 transcription through NOTCH pathway to promote cell stemness in lung adenocarcinoma

FOXA1 通过 NOTCH 通路激活 NOLC1 转录促进肺腺癌细胞干性

阅读:11
作者:Ji-Fa Li, Xiao-Qiong Bao, Wen-Wen Yu, Xiang-Xiang Chen, Yang-Yang Ni, Yu-Bo Shi, Jin-Cong Wang, Yang-Jie Sun, Ai-Li Chen, Wei-Long Zhou, Hua Ye

Abstract

Tumor cell stemness plays a pivotal role in generating functional heterogeneity within tumors and is implicated in essential processes such as drug resistance, metastasis, and cell proliferation. Therefore, creating novel tumor diagnostic techniques and therapeutic plans requires a knowledge of the possible processes that preserve the stem cell-like qualities of cancers. Bioinformatics analysis of NOLC1 expression in lung adenocarcinoma (LUAD) and prediction of its upstream transcription factors and their binding sites were completed. RT-qPCR detection of NOLC1 and FOXA1 expression, colony formation assay of cell proliferation, Transwell assay of cell invasion, sphere formation assay of cell stemness, western blot detection of CD133, OCT4, GLI1, NOTCH1 and Hes1 expression, CCK-8 assay of IC50 value of cisplatin, and ChIP and dual-luciferase reporter validation of binding relationship between NOLC1 and FOXA1 were done. NOLC1 expression was elevated in LUAD cells and tissues. Decreased NOLC1 expression inhibited the proliferation and invasive capacity of LUAD cells, prevented LUAD cells from becoming stem cells, and suppressed cisplatin resistance in the cells. Rescue tests demonstrated that NOLC1 activated the NOTCH pathway to increase the stemness of LUAD cells and promoted cisplatin resistance in LUAD cells. The activation of NOLC1 transcription by FOXA1 was validated by bioinformatics prediction and molecular verification, and the FOXA1/NOLC1 axis enhanced the stemness of LUAD cells. Activation of NOLC1 transcription by FOXA1 through NOTCH pathway promoted stemness of LUAD. FOXA1/NOLC1 axis is expected to become a new target for inhibiting stemness of LUAD cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。