Inhibition of Acute mGluR5-Dependent Depression in Hippocampal CA1 by High-Frequency Magnetic Stimulation

高频磁刺激抑制海马CA1区急性mGluR5依赖性抑郁

阅读:10
作者:Norman Holl, Marco Heerdegen, Volker Zschorlich, Rüdiger Köhling, Timo Kirschstein

Abstract

High-frequency magnetic stimulation (HFMS) applied directly to the hippocampal slice preparation in vitro induces activity-dependent synaptic plasticity and metaplasticity. In addition, changes in synaptic transmission following HFMS involve the activation of N-methyl-D-aspartate and metabotropic glutamate receptors (mGluR). Here, we asked whether a short period of HFMS (5 × 10 delta-burst trains, duration of ~1 min) could alter mGluR5-mediated depression at Schaffer collateral-CA1 synapses in the acute brain slice preparation at 30 min after HFMS. To this end, we obtained field excitatory postsynaptic potential (fEPSP) slopes from Schaffer collateral-CA1 synapses after HFMS or control. First, we demonstrated that activity-dependent plasticity following HFMS depends on the slice orientation towards the magnetic coil indicating specific ion fluxes induced by magnetic fields. Second, we found that the mGluR5-specific agonist (RS)-2-chloro-5-hydroxyphenylglycine reduced the field excitatory postsynaptic potential (fEPSP) slopes in control slices but rather enhanced them in HFMS-treated slices. In contrast, the compound (S)-3,5-dihydroxyphenylglycine acting at both mGluR1 and mGluR5 reduced fEPSP slopes in both control and HFMS-treated slices. Importantly, the mGluR-dependent effects were independent from the slice-to-coil orientation indicating that asynchronous glutamate release could play a role. We conclude that a short period of HFMS inhibits subsequently evoked mGluR5-dependent depression at Schaffer collateral-CA1 synapses. This could be relevant for repetitive transcranial magnetic stimulation in psychiatric disorders such as major depression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。