HMGB1/TREM1 crosstalk between heat-injured hepatocytes and macrophages promotes HCC progression after RFA

热损伤肝细胞与巨噬细胞之间的 HMGB1/TREM1 串扰促进 RFA 后 HCC 进展

阅读:6
作者:Bin Xiong #, Chunming Li #, Guoqing Hong, Junke Li, Qing Luo, Jianping Gong, Xing Lai

Conclusion

RFA-induced thermal injury triggers HMGB1 release from HCs, driving macrophage M2 polarization and increasing the invasion ability of liver cancer cells. These findings reveal a potential therapeutic target for combating liver cancer recurrence following thermal ablation.

Methods

A liver cancer thermal injury mouse model was established via RFA in the C57BL/6 mice. Primary HCs and Kupffer cells (KCs) were isolated and cultured to assess their sensitivity to thermal injury via the MTT assay. Flow cytometry was used to assess macrophage polarization. Furthermore, Western blotting and co-immunoprecipitation (co-IP) were utilized to evaluate the protein expression of intracellular signaling pathway. Finally, Transwell and wound healing assays was conducted to evaluate the invasion potential of liver cancer cells.

Purpose

Tumor recurrence after radiofrequency ablation (RFA) affects the survival rate of patients and limits its clinical application. Tumor recurrence around the ablation area may be related to the thermal injury of hepatocytes (HCs) around the tumor, but the specific mechanism is still unclear.

Results

Our findings revealed that RFA-induced liver thermal injury promoted the upregulation and secretion of HMGB1 in HCs. HMGB1 had a protective effect on HCs thermal injury, potentially mediated through autophagy regulation. Heat-injured HCs release HMGB1, which activates the TREM1/JAK2/STAT3 signaling pathway in KCs, thus fostering an immunosuppressive tumor microenvironment (TME). Moreover, HMGB1 secretion by heat-injured HCs exacerbates the migration and invasion of HCC cells by influencing macrophage polarization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。