Effect of Processing Techniques on the Microstructure and Mechanical Performance of High-Density Polyethylene

加工工艺对高密度聚乙烯微观结构和力学性能的影响

阅读:8
作者:Edgar Mejia, Nizamudeen Cherupurakal, Abdel-Hamid I Mourad, Sultan Al Hassanieh, Mohamed Rabia

Abstract

The versatility of high-density polyethylene (HDPE) makes it one of the most used polymers for vast applications ranging from food packaging to human implants. However, there still is confusion regarding the proper selection of processing techniques to produce HDPE specimens for high-end applications. Herein, we compare the processing of HDPE by two relevant techniques: compression and injection molding. The fabricated samples were studied using uniaxial tensile testing to determine their mechanical performance. Furthermore, the microstructure of samples was analyzed using different characterization techniques. Compression-molded specimens recorded a higher degree of crystallinity (DC) using two different characterization techniques such as differential scanning calorimetry (DSC) and X-ray diffraction (XRD). With this information, critical processing factors were determined, and a general structure-property relationship was established. It was demonstrated that having a higher DC resulted in higher yield strength and Young's modulus. Furthermore, premature failure was observed in the injection-molded specimens, resulting in lower mechanical performance. This premature failure was caused due to flow marks observed using scanning electron microscopy (SEM). Therefore, it is concluded that compression molding produces superior samples compared to injection molding.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。