Helicobacter pylori-controlled c-Abl localization promotes cell migration and limits apoptosis

幽门螺杆菌控制的 c-Abl 定位促进细胞迁移并限制细胞凋亡

阅读:6
作者:Gernot Posselt, Maria Wiesauer, Bianca E Chichirau, Daniela Engler, Linda M Krisch, Gabriele Gadermaier, Peter Briza, Sabine Schneider, Francesco Boccellato, Thomas F Meyer, Cornelia Hauser-Kronberger, Daniel Neureiter, Anne Müller, Silja Wessler

Background

Deregulated c-Abl activity has been intensively studied in a variety of solid tumors and leukemia. The class-I carcinogen Helicobacter pylori (Hp) activates the non-receptor tyrosine kinase c-Abl to phosphorylate the oncoprotein cytotoxin-associated gene A (CagA). The role of c-Abl in CagA-dependent pathways is well established; however, the knowledge of CagA-independent c-Abl processes is scarce.

Conclusions

In this study, we identified a novel regulatory mechanism in Hp-infected gastric epithelial cells by which Hp determines the subcellular localization of activated c-Abl to control Hp-mediated EMT-like processes while decreasing cell death.

Methods

c-Abl phosphorylation and localization were analyzed by immunostaining and immunofluorescence. Interaction partners were identified by tandem-affinity purification. Cell elongation and migration were analyzed in transwell-filter experiments. Apoptosis and cell survival were examined by FACS analyses and MTT assays. In mice experiments and human biopsies, the involvement of c-Abl in Hp pathogenesis was investigated.

Results

Here, we investigated the activity and subcellular localization of c-Abl in vitro and in vivo and unraveled the contribution of c-Abl in CagA-dependent and -independent pathways to gastric Hp pathogenesis. We report a novel mechanism and identified strong c-Abl threonine 735 phosphorylation (pAblT735) mediated by the type-IV secretion system (T4SS) effector D-glycero-β-D-manno-heptose-1,7-bisphosphate (βHBP) and protein kinase C (PKC) as a new c-Abl kinase. pAblT735 interacted with 14-3-3 proteins, which caused cytoplasmic retention of c-Abl, where it potentiated Hp-mediated cell elongation and migration. Further, the nuclear exclusion of pAblT735 attenuated caspase-8 and caspase-9-dependent apoptosis. Importantly, in human patients suffering from Hp-mediated gastritis c-Abl expression and pAblT735 phosphorylation were drastically enhanced as compared to type C gastritis patients or healthy individuals. Pharmacological inhibition using the selective c-Abl kinase inhibitor Gleevec confirmed that c-Abl plays an important role in Hp pathogenesis in a murine in vivo model. Conclusions: In this study, we identified a novel regulatory mechanism in Hp-infected gastric epithelial cells by which Hp determines the subcellular localization of activated c-Abl to control Hp-mediated EMT-like processes while decreasing cell death.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。