Human immunodeficiency virus reactivation by phorbol esters or T-cell receptor ligation requires both PKCalpha and PKCtheta

人类免疫缺陷病毒通过佛波醇酯或 T 细胞受体连接重新激活需要 PKCalpha 和 PKCtheta

阅读:8
作者:Sergey A Trushin, Gary D Bren, Susana Asin, Kevin N Pennington, Carlos V Paya, Andrew D Badley

Abstract

Latently human immunodeficiency virus (HIV)-infected memory CD4(+) T cells represent the major obstacle to eradicating HIV from infected patients. Antigens, T-cell receptor (TCR) ligation, and phorbol esters can reactivate HIV from latency in a protein kinase C (PKC)-dependent manner; however, it is unknown which specific PKC isoforms are required for this effect. We demonstrate that constitutively active (CA) forms of both PKCtheta, PKCthetaA148E, and PKCalpha, PKCalphaA25E, induce HIV long terminal repeat (LTR)-dependent transcription in Jurkat and primary human CD4(+) T cells and that both PKCthetaA148E and PKCalphaA25E cause HIV reactivation in J1.1 T cells. Suppression of both PKCalpha and PKCtheta with short hairpinned (sh) RNA inhibited CD3/CD28-induced HIV LTR-dependent transcription and HIV reactivation in J1.1 T cells. Both prostratin and phorbol myristate 13-acetate induced HIV LTR-dependent transcription and HIV reactivation in J1.1 T cells that was blocked by shRNA against either PKCalpha or PKCtheta. Since suppression of PKCalpha and PKCtheta together has no greater inhibitory effect on HIV reactivation than inhibition of PKCalpha alone, our data confirm that PKCalpha and PKCtheta act in sequence. The requirement for PKCalpha and PKCtheta for prostratin-induced HIV reactivation and the ability of selective PKCalpha or PKCtheta agonists to induce HIV transcription indicate that these PKC isoforms are important targets for therapeutic drug design.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。