Burn-Induced Microglia Activation is Associated With Motor Neuron Degeneration and Muscle Wasting in Mice

烧伤引起的小胶质细胞激活与小鼠运动神经元退化和肌肉萎缩有关

阅读:7
作者:Li Ma, Yinhui Zhou, Mohammed A S Khan, Shingo Yasuhara, J A Jeevendra Martyn

Conclusion

BI induces microglia proliferation and activation (cytokine and chemokine release), degeneration of ventral horn motor neurons and muscle mass loss, all of which were accentuated by concomitant immobilization. The mechanisms connecting microglia activation and motor neuron degeneration to muscle mass loss require further delineation.

Methods

Body surface (35%) BI, immobilization alone (Immob), BI with immobilization (BI + Immob), or Sham BI were administered to mice. Spinal cord (L3-L4 segments) and skeletal muscle tissues were harvested on days 7 and 14 after perturbations to examine microglia, motor neuron, and skeletal muscle changes.

Results

BI and BI + Immob significantly (P < 0.05) activated microglia, evidenced by its increased density around motor neurons, upregulated neuroinflammation-marker, translocator protein 18 kDa expression and inflammatory cytokines (interleukin-1β, tumor necrosis factor-α) and/or chemokines (CXCL2) expression at days 7 and 14. Ventral horn motor neurons apoptosis and downregulation were observed at both periods after BI and was significantly magnified by concomitant BI + Immob. BI and more prominently BI + Immob disintegrated and fragmented the pretzel-shaped synapse and was associated with significantly decreased gastrocnemius, tibialis, and soleus muscle masses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。