Scaffold-free cartilage subjected to frictional shear stress demonstrates damage by cracking and surface peeling

受到摩擦剪切应力的无支架软骨出现开裂和表面剥落等损伤

阅读:7
作者:G Adam Whitney, Karthik Jayaraman, James E Dennis, Joseph M Mansour

Abstract

Scaffold-free engineered cartilage is being explored as a treatment for osteoarthritis. In this study, frictional shear stress was applied to determine the friction and damage behaviour of scaffold-free engineered cartilage, and tissue composition was investigated as it related to damage. Scaffold-free engineered cartilage frictional shear stress was found to exhibit a time-varying response similar to that of native cartilage. However, damage occurred that was not seen in native cartilage, manifesting primarily as tearing through the central plane of the constructs. In engineered cartilage, cells occupied a significantly larger portion of the tissue in the central region where damage was most prominent (18 ± 3% of tissue was comprised of cells in the central region vs 5 ± 1% in the peripheral region; p < 0.0001). In native cartilage, cells comprised 1-4% of tissue for all regions. Average bulk cellularity of engineered cartilage was also greater (68 × 103 ± 4 × 103 vs 52 × 103 ± 22 × 103 cells/mg), although this difference was not significant. Bulk tissue comparisons showed significant differences between engineered and native cartilage in hydroxyproline content (8 ± 2 vs 45 ± 3 µg HYP/mg dry weight), solid content (12.5 ± 0.4% vs 17.9 ± 1.2%), shear modulus (0.06 ± 0.02 vs 0.15 ± 0.07 MPa) and aggregate modulus (0.12 ± 0.03 vs 0.32 ± 0.14 MPa), respectively. These data indicate that enhanced collagen content and more uniform extracellular matrix distribution are necessary to reduce damage susceptibility. Copyright © 2014 John Wiley & Sons, Ltd.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。