Effect of eleutheroside B1 on non‑coding RNAs and protein profiles of influenza A virus‑infected A549 cells

刺五加苷B1对甲型流感病毒感染的A549细胞非编码RNA和蛋白质谱的影响

阅读:7
作者:Wen Yan, Jing Chen, Zhenquan Wei, Xiaohu Wang, Zhiqi Zeng, Dumizulu Tembo, Yutao Wang, Xinhua Wang

Abstract

Influenza viruses often pose a serious threat to animals and human health. In an attempt to explore the potential of herbal medicine as a treatment for influenza virus infection, eleutheroside B1, a coumarin compound extracted from herba sarcandrae, was identified, which exhibited antiviral and anti‑inflammatory activities against influenza A virus. In this study, high‑throughput RNA sequencing and isobaric tags for relative and absolute quantification (iTRAQ) assays were performed to determine alterations in the non‑coding RNA (ncRNA) transcriptome and proteomics. Bioinformatics and target prediction analyses were used to decipher the potential roles of altered ncRNAs in the function of eleutheroside B1. Furthermore, long ncRNA (lncRNA) and mRNA co‑expressing networks were constructed to analyze the biological functions by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. The analysis of RNA sequencing data revealed that 5 differentially expressed ncRNAs were upregulated and 3 ncRNAs were downregulated in the A549 cells infected with A/PR8/34/H1N1, with or without eleutheroside B1 treatment (PR8+eleu and PR8, respectively). Nuclear paraspeckle assembly transcript 1 (NEAT1) was differentially expressed between the PR8 and A549 cell groups. GO and KEGG pathway analyses indicated that eleutheroside B1 took advantage of the host cell biological processes and molecular function for its antiviral and anti‑inflammatory activities, as well as for regulating cytokine‑cytokine receptor interaction in the immune system, consistent with previous findings. The results of the iTRAQ assays indicated that L antigen family member 3 (LAGE3) protein, essential for tRNA processing, tRNA metabolic processes and ncRNA processing, was downregulated in the PR8+eleu compared with the PR8 group. In the present study, these comprehensive, large‑scale data analysis enhanced the understanding of multiple aspects of the transcriptome and proteomics that are involved in the antiviral and anti‑inflammatory activities of eleutheroside B1. These findings demonstrate the potential of eleutheroside B1 for use in the prevention and treatment of influenza A virus‑mediated infections.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。