Discovery of novel SARS-CoV-2 inhibitors targeting the main protease Mpro by virtual screenings and hit optimization

通过虚拟筛选和药物优化发现针对主要蛋白酶 Mpro 的新型 SARS-CoV-2 抑制剂

阅读:5
作者:Beatrice Mercorelli, Jenny Desantis, Marta Celegato, Alessandro Bazzacco, Lydia Siragusa, Paolo Benedetti, Michela Eleuteri, Federico Croci, Gabriele Cruciani, Laura Goracci, Arianna Loregian

Abstract

Two years after its emergence, SARS-CoV-2 still represents a serious and global threat to human health. Antiviral drug development usually takes a long time and, to increase the chances of success, chemical variability of hit compounds represents a valuable source for the discovery of new antivirals. In this work, we applied a platform of variably oriented virtual screening campaigns to seek for novel chemical scaffolds for SARS-CoV-2 main protease (Mpro) inhibitors. The study on the resulting 30 best hits led to the identification of a series of structurally unrelated Mpro inhibitors. Some of them exhibited antiviral activity in the low micromolar range against SARS-CoV-2 and other human coronaviruses (HCoVs) in different cell lines. Time-of-addition experiments demonstrated an antiviral effect during the viral replication cycle at a time frame consistent with the inhibition of SARS-CoV-2 Mpro activity. As a proof-of-concept, to validate the pharmaceutical potential of the selected hits against SARS-CoV-2, we rationally optimized one of the hit compounds and obtained two potent SARS-CoV-2 inhibitors with increased activity against Mpro both in vitro and in a cellular context, as well as against SARS-CoV-2 replication in infected cells. This study significantly contributes to the expansion of the chemical variability of SARS-CoV-2 Mpro inhibitors and provides new scaffolds to be exploited for pan-coronavirus antiviral drug development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。