Progressive changes in T₁, T₂ and left-ventricular histo-architecture in the fixed and embedded rat heart

固定和嵌入大鼠心脏中 T₁、T₂ 和左心室组织结构的渐进性变化

阅读:5
作者:Patrick W Hales, Rebecca A B Burton, Christian Bollensdorff, Fleur Mason, Martin Bishop, David Gavaghan, Peter Kohl, Jürgen E Schneider

Abstract

Chemical tissue fixation, followed by embedding in either agarose or Fomblin, is common practice in time-intensive MRI studies of ex vivo biological samples, and is required to prevent tissue autolysis and sample motion. However, the combined effect of fixation and sample embedding may alter tissue structure and MRI properties. We investigated the progressive changes in T(1) and T(2) relaxation times, and the arrangement of locally prevailing cardiomyocyte orientation determined using diffusion tensor imaging, in embedded ex vivo rat hearts fixed using Karnovsky's solution (glutaraldehyde-formaldehyde mix). Three embedding media were investigated: (i) standard agarose (n = 3 hearts); (ii) Fomblin (n = 4 hearts); and (iii) iso-osmotic agarose (n = 3 hearts); in the latter, the osmolarity of the fixative and embedding medium was adjusted to 300 mOsm to match more closely that of native tissue. The T(1) relaxation time in the myocardium showed a pronounced decrease over a 48-h period following embedding in Fomblin (-11.3 ± 6.2%; mean ± standard deviation), but was stable in standard agarose- and iso-osmotic agarose-embedded hearts. The mean myocardial T(2) relaxation time increased in all embedded hearts: by 35.1 ± 14.7% with standard agarose embedding, 13.1 ± 5.6% with Fomblin and 13.3 ± 1.4% with iso-osmotic agarose. Deviation in the orientation of the primary eigenvector of the diffusion tensor occurred in all hearts (mean angular changes of 6.6°, 3.2° and 1.9° per voxel after 48 h in agarose-, Fomblin- and iso-osmotic agarose-embedded hearts, respectively), indicative of progressive structural changes in myocardial histo-architecture, in spite of previous exposure to fast-acting tissue fixation. Our results suggest that progressive structural changes occur in chemically fixed myocardium, and that the extent of these changes is modulated by the embedding medium, and by osmotic gradients between the fixative in the tissue and the surrounding medium.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。