Atomoxetine suppresses radioresistance in glioblastoma via circATIC/miR-520d-5p/Notch2-Hey1 axis

阿托西汀通过 circATIC/miR-520d-5p/Notch2-Hey1 轴抑制胶质母细胞瘤的放射抗性

阅读:10
作者:Hyun Jeong Seok, Jae Yeon Choi, Dong Hyeon Lee, Incheol Shin, In Hwa Bae

Background

Resistance acquired after radiotherapy is directly related to the failure of various cancer treatments, including GBM. Because the mechanism for overcoming radioresistance has not yet been clearly identified, the development of diagnostic and therapeutic markers to treat radioresistance is necessary. Since increased expression of stemness- and EMT-related markers are reported to be closely correlated with radioresistance, research is underway to develop new drugs targeting these factors.

Conclusions

This study revealed that ATX suppresses radioresistance through the circATIC/miR-520d-5p/Notch2-Hey1 signaling pathway. These results showed the potential of ATX as a new drug that can overcome radioresistance, a major challenge in cancer treatment, and the signaling factors identified in this mechanism suggest the possibility of use as potential targets for the diagnosis and treatment of radioresistance.

Methods

To develop an anticancer drug that overcomes radioresistance, a library of drugs already approved by the FDA was used. After treating radioresistant GBM cells with each drug, the expression of stemness- and EMT-related markers was confirmed by qRT-PCR, and as a result, Atomoxetine (ATX) was selected. It was confirmed that radioresistance-induced cell migratory, invasive, sphere formation abilities, and tumor growth using a xenograft mouse model were suppressed upon ATX treatment. Using a miRNA prediction tool, we discovered miR-520d-5p, which targets Notch2 and Hey1, key factors in radioresistance, and discovered circATIC targeting this miRNA, revealing its relationship with ATX. We demonstrated the expression regulation mechanism and signaling mechanism between circATIC, miR-520d-5p, Notch2, and Hey1 factors using a luciferase reporter assay. In addition, the

Results

ATX showed potential as a treatment for radioresistance by suppressing the malignant phenotype by regulating the circATIC/miR-520d-5p/Notch2-Hey1 signaling mechanism in vitro and in vivo using radioresistant GBM cells. Conclusions: This study revealed that ATX suppresses radioresistance through the circATIC/miR-520d-5p/Notch2-Hey1 signaling pathway. These results showed the potential of ATX as a new drug that can overcome radioresistance, a major challenge in cancer treatment, and the signaling factors identified in this mechanism suggest the possibility of use as potential targets for the diagnosis and treatment of radioresistance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。