Position in proton Bragg curve influences DNA damage complexity and survival in head and neck cancer cells

质子布拉格曲线中的位置影响头颈癌细胞的 DNA 损伤复杂性和存活率

阅读:7
作者:Tim Heemskerk, Celebrity Groenendijk, Marta Rovituso, Ernst van der Wal, Wouter van Burik, Konstantinos Chatzipapas, Danny Lathouwers, Roland Kanaar, Jeremy M C Brown, Jeroen Essers

Background and purpose

Understanding the cellular and molecular effect of proton radiation, particularly the increased DNA damage complexity at the distal end of the Bragg curve, is current topic of investigation. This work aims to study in vitro clonogenic survival and DNA damage foci kinetics of a head and neck squamous cell carcinoma cell line at various positions along a double passively scattered Bragg curve. Complementary in silico studies are conducted to gain insights into the link between cell survival variations, experimentally yielded foci and the number and complexity of double strand breaks (DSBs). Materials and

Conclusions

This combined approach provides valuable insights into the cellular and molecular effect of proton radiation, emphasizing the increased DNA damage complexity at the distal end of the Bragg curve, and has the potential to enhance the efficacy of proton therapy.

Methods

Proton irradiations are performed at the HollandPTC R&D proton beamline, using a double passively scattered setup. A custom water phantom setup is employed to accurately position the samples within the Bragg curve. FaDu cells are irradiated at the proximal 36 % point of the Bragg peak, (P36), proximal 80 % point of the Bragg peak (P80) and distal 20 % point of the Bragg peak (D20), with dose-averaged mean lineal energies ( ¯¯¯¯yDyD¯<math> <mover> <mrow><msub><mi>y</mi> <mi>D</mi></msub> </mrow> <mrow><mo>¯</mo></mrow> </mover> </math> ) of 1.10 keV/μm, 1.80 keV/μm and 7.25 keV/μm, respectively.

Purpose

Understanding the cellular and molecular effect of proton radiation, particularly the increased DNA damage complexity at the distal end of the Bragg curve, is current topic of investigation. This work aims to study in vitro clonogenic survival and DNA damage foci kinetics of a head and neck squamous cell carcinoma cell line at various positions along a double passively scattered Bragg curve. Complementary in silico studies are conducted to gain insights into the link between cell survival variations, experimentally yielded foci and the number and complexity of double strand breaks (DSBs). Materials and

Results

Clonogenic survival correlates strongly with ¯¯¯¯yDyD¯<math> <mover> <mrow><msub><mi>y</mi> <mi>D</mi></msub> </mrow> <mrow><mo>¯</mo></mrow> </mover> </math> , showing similar survival for P36 (D37%=3.0 Gy) and P80 (D37%=2.9 Gy), but decreased survival for D20 (D37% = 1.6 Gy). D20 irradiated samples exhibit increased 53BP1 foci shortly after irradiation, slower resolution of the foci, and larger residual 53BP1 foci after 24 h, indicating unrepaired complex breaks. These experimental observations are supported by the in silico study which demonstrates that irradiation at D20 leads to a 1.7-fold increase in complex DSBs with respect to the total number of strand breaks compared to P36 and P80. Conclusions: This combined approach provides valuable insights into the cellular and molecular effect of proton radiation, emphasizing the increased DNA damage complexity at the distal end of the Bragg curve, and has the potential to enhance the efficacy of proton therapy.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。