A self-assembled nanoparticle vaccine elicits effective neutralizing antibody response against EBV infection

自组装纳米颗粒疫苗可引发针对 EBV 感染的有效中和抗体反应

阅读:5
作者:Ping Li #, Ziyi Jiang #, Jingjing Shi #, Haochuan Sha, Zihang Yu, Yan Zhao, Sanyang Han, Lan Ma

Background

Epstein-Barr virus (EBV) is a significant global public health concern because of its association with various malignancies and autoimmune diseases. Over 90% of the global population is chronically infected with EBV, impacting numerous cancer-related cases annually. However, none of the effective prophylactic vaccines against EBV is approved at present.

Conclusion

These data indicate that the L350-ferritin nanoparticle vaccine candidate has considerable potential application in preventing EBV infection and provides a promising basis for developing prophylactic EBV vaccines.

Methods

In this study, we developed a novel vaccine candidate based on epitope peptides from the receptor-binding domain of EBV-encoded gp350 glycoprotein to prevent EBV infection. These epitope peptides detected a binding capability with host cells were then fused by flexibility linkers and expressed in Escherichia coli to reduce the unnecessary glycan modifications to simulate their free-glycan status. The fused recombinant protein (L350) was displayed on the surface of ferritin-based nanoparticle. The immunogenicity of the L350-ferritin nanoparticle was evaluated in Balb/c mice, and the neutralizing titers of sera from immunized mice were detected by means of an infection blocking assay in an in vitro cell model.

Results

All the five epitope peptides could bind to AKATA cells, and their fused recombinant protein (L350) was successfully presented on the surface of self-assembled ferritin nanoparticles. Sera from the L350-ferritin nanoparticle-immunized mice showed high titers of both L350 protein-specific and gp350D123 protein-specific antibodies, and sera from gp350D123 protein-immunized mice could also recognize L350 protein well. Most importantly, the L350-ferritin nanoparticle induced efficient neutralizing antibodies to block EBV-GFP infection in AKATA cells and also constructed a strong antigen-specific B-cell memory in immunized mice. Moreover, histopathological changes of main tissues from all vaccinated mice were not observed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。